Answer:
[tex]t = 15.7[/tex]
Step-by-step explanation:
Given
[tex]Principal = 25000[/tex] --- P
[tex]Amount = 75000[/tex] --- A
[tex]Rate = 7\%[/tex] --- R
Required
Determine the time (t)
Using continuous growth formula:
We have
[tex]A = Pe^{rt}[/tex]
Convert rate to decimal
[tex]Rate = 7\%[/tex]
[tex]r = 0.07[/tex]
Substitute values for A, P and r
[tex]75000 = 25000 * e^{0.07t}[/tex]
Divide both sides by 25000
[tex]3 = e^{0.07t}[/tex]
Rewrite the exponential function as logarithmic, we have:
[tex]ln3 = 0.07t[/tex]
Reorder
[tex]0.07t = ln3[/tex]
Divide both sides by 0.07
[tex]t = \frac{ln3}{0.07}[/tex]
[tex]t = \frac{1.09861228867}{0.07}[/tex]
[tex]t = 15.69[/tex]
[tex]t = 15.7[/tex]
Hence, the time is approximately 15.7 years