In a different tug of war, one team pulls with a force of 50 newtons at an angle of 30 degrees from the positive x-axis, and a second team pulls with a force of 25 newtons at an angle of 250 degrees. Use a scale drawing to determine the total force and angle applied to the central ring. How did they get the following answer?34.8 N at 2.5 degrees from the positive x-axis

Respuesta :

Answer:

34.8 N at 2.5 degrees from the positive x-axis

Step-by-step explanation:

From the given information:

The force F makes an angle A with the positive x axis can be expressed in terms horizontal and vertical components.

[tex]F_x = F cos A\\\\ F_y = Fsin A[/tex]

Given that

[tex]F_1 = 50 \ N[/tex]

[tex]\theta_1 = 30 ^0 \ \ \ (x-axis)[/tex]

[tex]F_{1x} = F_1 \times Cos A_1[/tex]

=  50 × cos 30

= 43.3 N

[tex]F_{1y} = F_1 \times Sin \ A_1[/tex]

= 50 × sin 30

= 25 N

Similarly;

[tex]F_2 = 25 \ N[/tex]

[tex]\theta_2 = 250 ^0 \ \ \ ( x-axis)[/tex]

[tex]F_{2x} = F_2 \times cos \ A_2[/tex]

= 25 × cos 250

= - 8.55 N

[tex]F_{2y} = F_2 \times A_2[/tex]

= 25 × sin 250

= -23.5 N

The total net force;

[tex]F_{net} = F_{(net)}_x + F_{(net)}_y[/tex]

[tex]F_{net} = (F_{1x} + F_{2x} ) i + (F_{1y} + F_{2y} )j[/tex]

[tex]F_{net} = (43.3 - 8.55) i + (25-23.5 ) j[/tex]

[tex]F_{net} =34.75 i + 1.5 j[/tex]

[tex]|F_{net} | = \sqrt{F_{net}_x^2 + F_{net}_y^2}[/tex]

[tex]|F_{net} | = \sqrt{34.75^2 + 1.5^2}[/tex]

[tex]|F_{net} | = 34.8 \ N[/tex]

Finally, the direction of the angle for the net force is:

[tex]tan \theta = \dfrac{F_{net_y}}{F_{net_x}}[/tex]

[tex]\theta = tan^{-1} \Big (\dfrac{F_{net_y}}{F_{net_x}} \Big)[/tex]

[tex]\theta = tan^{-1} \Big (\dfrac{1.5}{34.75}} \Big)[/tex]

[tex]\theta = tan^{-1}( 0.043165)[/tex]

[tex]\theta \simeq 2.5^0\ with \ positive \ x-axis[/tex]