Find the angle between the given vectors. Round your answer, in degrees, to two decimal places. u=⟨2,−6⟩u=⟨2,−6⟩, v=⟨4,−7⟩

Respuesta :

Answer:

[tex]\theta = 108.29[/tex]

Step-by-step explanation:

Given

[tex]u = <2,6>[/tex]

[tex]v = <4,-7>[/tex]

Required:

Calculate the angle between u and v

The angle [tex]\theta[/tex] is calculated as thus:

[tex]cos\theta = \frac{u.v}{|u|.|v|}[/tex]

For a vector

[tex]A = <a,b>[/tex]

[tex]A = a * b[/tex]

[tex]cos\theta = \frac{u.v}{|u|.|v|}[/tex] becomes

[tex]cos\theta = \frac{<2,6>.<4,-7>}{|u|.|v|}[/tex]

[tex]cos\theta = \frac{2*6+4*-7}{|u|.|v|}[/tex]

[tex]cos\theta = \frac{12-28}{|u|.|v|}[/tex]

[tex]cos\theta = \frac{-16}{|u|.|v|}[/tex]

For a vector

[tex]A = <a,b>[/tex]

[tex]|A| = \sqrt{a^2 + b^2}[/tex]

So;

[tex]|u| = \sqrt{2^2 + 6^2}[/tex]

[tex]|u| = \sqrt{4 + 36}[/tex]

[tex]|u| = \sqrt{40}[/tex]

[tex]|v| = \sqrt{4^2+(-7)^2}[/tex]

[tex]|v| = \sqrt{16+49}[/tex]

[tex]|v| = \sqrt{65}[/tex]

So:

[tex]cos\theta = \frac{-16}{|u|.|v|}[/tex]

[tex]cos\theta = \frac{-16}{\sqrt{40}*\sqrt{65}}[/tex]

[tex]cos\theta = \frac{-16}{\sqrt{2600}}[/tex]

[tex]cos\theta = \frac{-16}{\sqrt{100*26}}[/tex]

[tex]cos\theta = \frac{-16}{10\sqrt{26}}[/tex]

[tex]cos\theta = \frac{-8}{5\sqrt{26}}[/tex]

Take arccos of both sides

[tex]\theta = cos^{-1}(\frac{-8}{5\sqrt{26}})[/tex]

[tex]\theta = cos^{-1}(\frac{-8}{5 * 5.0990})[/tex]

[tex]\theta = cos^{-1}(\frac{-8}{25.495})[/tex]

[tex]\theta = cos^{-1}(-0.31378701706)[/tex]

[tex]\theta = 108.288386087[/tex]

[tex]\theta = 108.29[/tex] (approximated)