Respuesta :

Answer:

the solutions are 5 and -5

Step-by-step explanation:

[tex]5a^2-44=81[/tex]

first leave it as

[tex]something = 0[/tex]

so working on

[tex]5a^2-44-81=81-81\\\\5a^2-44-81=0[/tex]

add like terms

[tex]5a^2-125=0[/tex]

get common factor (in this case 5)

[tex]5(a^2-25)=0[/tex]

divide by 5

[tex]\frac{1}{5}[5(a^2-25)]=\frac{1}{5} [0][/tex]

simplify again

[tex]1(a^2-25)=0[/tex]

since 1*x = x we have

[tex]a^2-25=0[/tex]

now use the difference of squares formula  [tex]x^2-y^2=(x-y)(x+y)[/tex]

*note that 25 = 5^2

[tex](a-5) (a+5)=0[/tex]

now we have two cases

[tex]a-5=0[/tex]

and

[tex]a+5=0[/tex]

solve for each one

[tex]a-5=0\\\\a-5+5=0+5\\\\a+0=5\\\\a=5[/tex]

and the other one is

[tex]a+5=0\\\\a+5-5=0-5\\\\a+0=-5\\\\a=-5[/tex]

so the solutions are 5 and -5