Respuesta :

Answer:

x = 15

Step-by-step explanation:

Given that ∆PQR ~ ∆SQT, therefore their side lengths are proportional to each other.

Thus:

[tex] \frac{PQ}{SQ} = \frac{PR}{ST} [/tex]

PQ = (x + 5) + 8 = x + 13

SQ = 8

PR = 21

ST = x - 9

Plug in the values

[tex] \frac{x + 13}{8} = \frac{21}{x - 9} [/tex]

Cross multiply

[tex] (x + 13)(x - 9) = 8*21 [/tex]

[tex] x(x - 9) +13(x - 9) = 168 [/tex]

[tex] x^2 - 9x + 13x - 117 = 168 [/tex]

[tex] x^2 + 4x - 117 = 168 [/tex]

Subtract 168 from both sides

[tex] x^2 + 4x - 117 - 168 = 0 [/tex]

[tex] x^2 + 4x - 285 = 0 [/tex]

Factorize

[tex] x^2 + 19x - 15x - 285 = 0 [/tex]

[tex] x(x + 19) - 15(x + 19) = 0 [/tex]

(x + 19)(x - 15) = 0

x = -19 or x = 15

Answer:

x = 15

Step-by-step explanation:

x+13/9 = 21/x-9

x^2+4x−117=168

x^2+4x−285=0

(x−15)(x+19)=0

x=15

it cannot be a negative number so x cannot be -19