Answer:
Subtract [tex]-3c^2 + 12cd - 4d^2[/tex] from [tex]4c^2 + 3cd + 2d^2[/tex] we get [tex]\mathbf{7c^2-9cd+6d^2}[/tex]
Step-by-step explanation:
We need to Subtract [tex]-3c^2 + 12cd - 4d^2[/tex] from [tex]4c^2 + 3cd + 2d^2[/tex]
(Note: Considering 2d^2 instead of 2d as thinking it typo error)
Subtracting from means we have to subtract [tex]4c^2 + 3cd + 2d^2 -(-3c^2 + 12cd - 4d^2)[/tex]
Subtracting:
[tex]4c^2 + 3cd + 2d^2 -(-3c^2 + 12cd - 4d^2)\\=4c^2 + 3cd + 2d^2 +3c^2 - 12cd + 4d^2[/tex]
Combining like terms (Like terms are those that have same variables like 4c^2 and 3c^2 are like terms, 3cd and -12cd are like terms, 2d^2 and 4d^2 are like terms)
[tex]=4c^2+3c^2 + 3cd-12cd + 2d^2+4d^2 \\=7c^2-9cd+6d^2[/tex]
So, Subtract [tex]-3c^2 + 12cd - 4d^2[/tex] from [tex]4c^2 + 3cd + 2d^2[/tex] we get [tex]\mathbf{7c^2-9cd+6d^2}[/tex]