Set A of six numbers has a standard deviation of 3 and set B of four numbers has a standard deviation of 5. Both sets of numbers have an equal mean. If the two sets of numbers are combined, find the variance.​

Respuesta :

Given:

[tex]\sigma_A=3[/tex]

[tex]n_A=6[/tex]

[tex]\sigma_B=5[/tex]

[tex]n_B=4[/tex]

[tex]\overline{x}_A=\overline{x}_B[/tex]

To find:

The variance. of combined set.

Solution:

Formula for variance is

[tex]\sigma^2=\dfrac{\sum (x_i-\overline{x})^2}{n}[/tex]      ...(i)

Using (i), we get

[tex]\sigma_A^2=\dfrac{\sum (x_i-\overline{x}_A)^2}{n_A}[/tex]

[tex](3)^2=\dfrac{\sum (x_i-\overline{x}_A)^2}{6}[/tex]

[tex]9=\dfrac{\sum (x_i-\overline{x}_A)^2}{6}[/tex]

[tex]54=\sum (x_i-\overline{x}_A)^2[/tex]

Similarly,

[tex]\sigma_B^2=\dfrac{\sum (x_i-\overline{x}_B)^2}{n_B}[/tex]

[tex](5)^2=\dfrac{\sum (x_i-\overline{x}_B)^2}{4}[/tex]

[tex]25=\dfrac{\sum (x_i-\overline{x}_B)^2}{4}[/tex]

[tex]100=\sum (x_i-\overline{x}_B)^2[/tex]

Now, after combining both sets, we get

[tex]\sigma^2=\dfrac{\sum (x_i-\overline{x}_A)^2+\sum (x_i-\overline{x}_B)^2}{n_A+n_B}[/tex]

[tex]\sigma^2=\dfrac{54+100}{6+4}[/tex]

[tex]\sigma^2=\dfrac{154}{10}[/tex]

[tex]\sigma^2=15.4[/tex]

Therefore, the variance of combined set is 15.4.