Which congruence criteria can be used directly from the information about triangles HIJ and MNO to prove IJ¯¯¯¯¯¯≅MN¯¯¯¯¯¯¯¯¯¯ by CPCTC? HI¯¯¯¯¯¯¯≅NO¯¯¯¯¯¯¯¯, ∠I≅∠N, ∠H≅∠O (1 point) ASA congruence AAS congruence SAS congruence HL congruence

Respuesta :

Answer: [tex]\overline{IJ}\cong \overline{MN}[/tex]

Step-by-step explanation:

Given: In triangle HIJ and triangle MNO we have

[tex]\overline{HI}\cong \overline{NO}, \angle{I}\cong \angle{N} ,\angle{H}\cong \angle{O}[/tex]

here, HI and NN are the included side between  ∠I & ∠H and ∠N and ∠O.

So , by ASA congruence rule,

ΔHIJ ≅ ΔMNO

So by CPCTC  (corresponding parts of the congruent triangles are congruent)

[tex]\overline{IJ}\cong \overline{MN}[/tex]