Respuesta :
Answer:
[tex]Position:(3.38m ,2.53m)[/tex]
[tex]Velocity=(1.72m/s,1.22m/s)[/tex]
Explanation:
From the question we are told that
Mass of particle 1
[tex]M_1=2.0kg[/tex]
Co-ordinate of particle 1 (2.0m,6.0m)
Velocity of Particle 1
[tex]V_1= (3.1 m / s , 2.6 m / s )[/tex]
Mass of particle 2
[tex]M_2=4.5kg[/tex]
Co-ordinate of particle 2 (4.0m,1.0m)
Velocity of Particle 1
[tex]V_2=( 1.1 m / s , 0.6 m / s )[/tex]
Generally the Position is mathematically given as
[tex]X =\frac{ ((M_1 * Cx_1) + (M_2 *Cx_2)}{(M_1 + M_2)}[/tex]
[tex]X=\frac{2*2+4.5*4}{2+4.5}[/tex]
[tex]X=3.38[/tex]
[tex]Y=\frac{(M_1* Cy_1 + M_2* Cy_2)}{(M_1 + M_2)}[/tex]
[tex]Y =\frac{(2 * 6 + 4.5 * 1)}{(2 + 4.5)}[/tex]
[tex]Y= 2.53 m[/tex]
Therefore the position is given as
[tex]Position:(3.38m ,2.53m)[/tex]
Solving for Velocity
Generally the velocity of the system is mathematically Given as
[tex]V_x =\frac{ (M_1 * vx_1 + M_2 * Vx_2)}{(M_1 + M_2)}[/tex]
[tex]V_x=\frac{ (2 * 3.1 + 4.5 *1.1)}{(2 + 4.5)}[/tex]
[tex]V_x=1.72m/s[/tex]
For Y
[tex]V_y =\frac{(M_1* vy_1 + M_2* Vy_2)}{(M_1 + M_2)}[/tex]
[tex]V_y=\frac{ (2 * 2.6) + (4.5*0.6)}{(2 + 4.5)}[/tex]
[tex]V_y=1.22m/s[/tex]
Therefore Velocity
[tex]V=(1.72m/s,1.22m/s)[/tex]