Which expression is equivalent to (4g3h2k4)3

Answer:
d) [tex]8g^{6}h^{4} k^{12} - (h^{25} k^{15} )[/tex]
[tex]\frac{(4g^{3} h^{2}k^{4} )^{3} }{8g^{3}h^{2} } - (h^{5} k^{3} )^{5}[/tex] [tex]= 8g^{6}h^{4} k^{12} - (h^{25} k^{15} )[/tex]
Step-by-step explanation:
Explanation
Given expression
= [tex]\frac{(4g^{3} h^{2}k^{4} )^{3} }{8g^{3}h^{2} } - (h^{5} k^{3} )^{5}[/tex]
By using
(ab)ⁿ = aⁿbⁿ
[tex]\frac{a^{m} }{a^{n} } = a^{m-n}[/tex]
= [tex]\frac{(4)^{3} g^{9} h^{6}k^{12} ) }{8g^{3}h^{2} } - (h^{5} k^{3} )^{5}[/tex]
After simplification , we get
[tex]= 8g^{9}g^{-3} h^{6} h^{-2} k^{12} - (h^{5} k^{3} )^{5}[/tex]
[tex]= 8g^{9-3}h^{6-2} k^{12} - (h^{5} k^{3} )^{5}[/tex]
[tex]= 8g^{6}h^{4} k^{12} - (h^{25} k^{15} )[/tex]