Answer:
[tex]R =\frac{4}{4+1}(12 +8) -8[/tex]
Step-by-step explanation:
Given
[tex]QS = (-8,12)[/tex]
[tex]Ratio = 4 : 1[/tex]
Required
Determine the expression that correctly uses [tex]\frac{m}{m+n}(x_2 - x_1) + x_1[/tex]
In [tex]QS = (-8,12)[/tex]
[tex](x_1,x_2) = (-8,12)[/tex]
and
[tex]m:n = 4:1[/tex]
Substitute these values in:
[tex]\frac{m}{m+n}(x_2 - x_1) + x_1[/tex]
[tex]R =\frac{4}{4+1}(12 - (-8)) + (-8)[/tex]
The expression becomes:
[tex]R =\frac{4}{4+1}(12 +8) -8[/tex]
Solving further:
[tex]R = \frac{4}{5}(20)-8[/tex]
[tex]R = \frac{4*20}{5}-8[/tex]
[tex]R = \frac{80}{5}-8[/tex]
[tex]R = 16 - 8[/tex]
[tex]R = 8[/tex]
Hence, R is at 8 on the number line