Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.) x1 2x2 8x3

Respuesta :

Answer:

Infinitely solution exists,

Required solution is, [tex](x_1,x_2,x_3)=(0, 4(1-t),t)[/tex]

Step-by-step explanation:

We have the given equations:

[tex]x_1+2x_2+8x_3=8[/tex]

[tex]x_1+x_2+4x_3=4[/tex]

Here, the augmented matrix is :

[tex]\left[\begin{matrix}1&2&8&8\\1&1&4&4\end{matrix}\right][/tex]

Now, find the echelon form of the augmented matrix.

[tex]=\left[\begin{matrix}1&2&8&8\\0&-1&-4&-4\end{matrix}\right]^{R_1\rightarrow R_2-R_1}[/tex]

[tex]=\left[\begin{matrix}1&0&0&0\\0&-1&-4&-4\end{matrix}\right]^{R_1\rightarrow R_1+2R_2}[/tex]

Therefore, [tex]x_1=0[/tex]

                [tex]-x_2-4x_3=-4[/tex]

             [tex]\Rightarrow x_2=4(1-x_3)[/tex]

Let [tex]x_3=t[/tex], then the required solution is

 [tex](x_1,x_2,x_3)=(0, 4(1-t),t)[/tex]