Respuesta :

Answer:

Perimeter of triangle = 12 + 9 + 15

                                   = 36 units

Therefore, option A is correct.

Step-by-step explanation:

The given points

  • (-4, 5)
  • (8, 5)
  • (8, -4)

From the table, it is clear the side containing the line segment joining the points (-4, 5) and (8, 5) is a straight horizontal line.

Thus, the length of the horizontal distance from the points (-4, 5) and (8, 5) will be:

8-(-4) = 12 units

From the table, it is clear the side containing the line segment joining the points (8, 5) and (8, -4) is a straight vertical line.

Thus, the length of the vertical distance from the points (8, -4) and (8, 5) will be:

5-(-4) = 9

Now, finding the length of the side containing the segment (8, -4) and (-4, 5) using the formula:

[tex]\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]=\sqrt{\left(-4-8\right)^2+\left(5-\left(-4\right)\right)^2}[/tex]

[tex]=\sqrt{\left(-4-8\right)^2+\left(5+4\right)^2}[/tex]

[tex]=\sqrt{12^2+9^2}[/tex]

[tex]=\sqrt{144+81}[/tex]

[tex]=\sqrt{225}[/tex]

[tex]=\sqrt{15^2}[/tex]

[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a[/tex]

[tex]=15[/tex]

We know that the Perimeter of a rectangle is the length of all the sides of the triangle. Therefore, combining all the lengths of the line segments

Thus,

Perimeter of triangle = 12 + 9 + 15

                                   = 36 units

Therefore, option A is correct.