A common inhabitant of human intestines is the bacterium Escherichia coli. A cell of this bacterium in a nutrient-broth medium divides into two cells every 20 minutes. The initial population of a culture is 71 cells. (a) Find the relative growth rate. (Assume t is measured in hours.) k = Incorrect: Your answer is incorrect. (b) Find an expression for the number of cells after t hours. P(t) = Incorrect: Your answer is incorrect. (c) Find the number of cells after 8 hours. cells (d) Find the rate of growth after 8 hours. (Round your answer to three decimal places.) billion cells per hour (e) When will the population reach 20,000 cells? (Round your answer to two decimal places.) hr

Respuesta :

Answer:

[tex]r=1.57[/tex], [tex]P(t)=71e^{3t\ln2}[/tex], [tex]P(8)=1191182336[/tex],[tex]P'(8)=2476994033[/tex]  [tex]t=2.713\; hr[/tex]

Step-by-step explanation:

[tex](a)[/tex] Find the relative growth rate.

[tex]P=Ae^{rt}[/tex] where given [tex]A=71, P(t)=120\;\;and \;\; t=\frac{1}{3}[/tex]

Find the value of [tex]r[/tex]

[tex]\Rightarrow 120=71 e^{\frac{r}{3} }[/tex]

[tex]\Rightarrow \frac{120}{71} =e^{\frac{r}{3} }[/tex]

[tex]\Rightarrow 1.69=e^{\frac{r}{3} }[/tex]

[tex]\Rightarrow \ln1.69=\frac{r}{3}[/tex]

[tex]\Rightarrow 3\ln1.69=r \;\;\; or \;\;\; r=1.57[/tex]

[tex](b)[/tex]   Find an expression for the number of cells after t hours.

[tex]P(t)=71e^{3t\ln2}[/tex]

[tex](c)[/tex]  Find the number of cells after 8 hours.

[tex]P(8)=71e^{3\times 8\times \ln2}[/tex]

[tex]\Rightarrow P(8)=1191182336[/tex]

[tex](d)[/tex]  Find the rate of growth after 8 hours.

  [tex]P(t)=71e^{3\times t\times \ln2}[/tex]

Now differentiate w.r.t. [tex]t[/tex]

[tex]\Rightarrow P'(t)=71\times 3\ln2\times e^{3t\ln2}[/tex]

[tex]\Rightarrow P'(8)=3573547008\ln2[/tex]

             [tex]=2476994033[/tex]

[tex](e)[/tex]  When will the population reach 20,000 cells?

     [tex]20,000=71e^{3t\ln2}[/tex]

[tex]\Rightarrow \ln\frac{20000}{71} =3t\ln2[/tex]

[tex]\Rightarrow \frac{ \ln\frac{20000}{71}}{3\ln2} =t[/tex]

S0, [tex]t=2.713 hr[/tex]