Answer:
[tex]\huge\boxed{w=1}[/tex]
Step-by-step explanation:
[tex]3^{2w}+6\times3^w-27=0\\\\\left(3^w\right)^2+6\times3^w-27=0\\\\\text{substitute}\ t=3^w>0\\\\t^2+6t-27=0\\\\t^2+9t-3t-27=0\\\\t(t+9)-3(t+9)=0\\\\(t+9)(t-3)=0\iff t+9=0\ \vee\ t-3=0\\\\t+9=0\to t=-9<0\\\\t-3=0\to t=3>0[/tex]
therefore
[tex]3^w=3\\\\3^w=3^1\Rightarrow \boxed{w=1}[/tex]