Answer:
[tex] \frac{11 {z}^{2} }{14} [/tex]
Step-by-step explanation:
[tex] \frac{165 {z}^{3} }{210z} = \frac{165 \times {z}^{3} }{210 \times z} = \frac{165}{210} \times \frac{ {z}^{3} }{z} [/tex]
Now lets reduce the numerator and denominator with their common factors.
So ,
[tex] = > \frac{165}{210} \times \frac{ {z}^{3} }{z} = \frac{11}{14} \times {z}^{2} = \frac{11 {z}^{2} }{14} [/tex]