Respuesta :

Answer:

P(200 ≤ X ≤ 500) = 0.9973

Step-by-step explanation:

Let assume that the question intends us to find what percentage of students scored between 500 and 200 on this test.

Given that:

[tex]\mu = 350 \\ \\ \sigma = 50 \\ \\ x_ 1 =200 \\ \\ x_2 = 500[/tex]

We need to first compute the Z test statistics

[tex]z = \dfrac{x - \mu}{\sigma}[/tex]

[tex]z_1 = \dfrac{200 - 350}{50}= -3[/tex]

[tex]z_2= \dfrac{500 - 350}{50}= 3[/tex]

Thus;

[tex]P(200 \le X \le 500) = P(-3 \le z \le 3) \\ \\= P(z \le 3) - P(z \le -3) \\ \\= 0.9987 - 0.0014 \\ \\ = 0.9973[/tex]