Respuesta :

Answer:

[tex]y = \frac{3}{2}x - 5[/tex]

Explanation:

Given

[tex]3x - 2y = 7[/tex]

Required

Select the equation of a line, parallel to this

First, we make y the subject:

[tex]3x - 2y = 7[/tex]

Subtract 3x from both sides

[tex]3x-3x - 2y = -3x+7[/tex]

[tex]- 2y = -3x+7[/tex]

Divide through by -2

[tex]\frac{- 2y}{-2} = \frac{-3x}{-2}+\frac{7}{-2}[/tex]

[tex]y = \frac{-3x}{-2}+\frac{7}{-2}[/tex]

[tex]y = \frac{3x}{2}-\frac{7}{2}[/tex]

[tex]y = \frac{3}{2}x-\frac{7}{2}[/tex]

The general form of an equation is:

[tex]y = mx + b[/tex]

Where:

[tex]m = slope[/tex]

So, we have:

[tex]m = \frac{3}{2}[/tex]

For an equation to be parallel, the slope must also be:

[tex]m = \frac{3}{2}[/tex]

From the list of given options (see attachment), only

[tex]y = \frac{3}{2}x - 5[/tex]

has the same slope.

Hence:

[tex]y = \frac{3}{2}x - 5[/tex] is parallel

Ver imagen MrRoyal