A liquid with a specific gravity of 2.6 and a viscosity of 2.0 cP flows through a smooth pipe of unknown diameter, resulting in a pressure drop of 0.183 lb/in? for 1.73 mi. What is a pipe diameter in inches if the mass rate of flow is 7000 lb/h?

Respuesta :

.......,.,.,.,.,.,,.,.,,.,.,.,.,.,.,.,,.,.,,.,,,.,,.,,.,.,.,.,,............,,,,,,’mmdjidvdhxxkf jkkk he in d

From the information, let us list the parameters given to solve for the diameter of the pipe.

Given that:

  • the specific gravity of the liquid (SG) = 2.6
  • the density of the liquid = (S.G × density of water) = 2.6 × 1000 kg/m³

= 2600 kg/m³

Using the standard conversion rates:

  • The viscosity = 2.0 cP = 0.002 kg/m.s
  • The pressure drop ΔP = 0.183 lbf/in²

Since 1 lbf/in² = 6894.76 N/m²

  • The pressure drop ΔP = 0.183 lbf/in² = 1261.74 N/m²
  • The length of the pipe = 1.73 mi = 2784.165 m
  • Mass flowrate = 7000 lb/h =  0.882 kg/s

From the given information, let's start by determining the volumetric flow rate of the liquid in the pipe:

[tex]\mathbf{The \ volumetric \ flow \ rate \ ( Q) = \dfrac{mass \ flow \ rate}{density \ of \ the \ liquid}}[/tex]

[tex]\mathbf{Q = \dfrac{0.882 \ kg/s}{2600 \ kg/m^3}}[/tex]

Q = 0.00034 m³/s

In a cylindrical flow pipe, using the formula for the pressure drop to estimated the pipe diameter, we have:

[tex]\mathsf{\dfrac{\Delta P}{\rho g}= \dfrac{8fLQ^2}{\pi^2gd^5}} --- (1)[/tex]

where (f) can be computed as;

[tex]f = \dfrac{64}{\dfrac{\rho vd}{\mu}}[/tex]

[tex]f = \dfrac{64}{\dfrac{\rho Qd}{A\mu}}[/tex]

replacing the values from the above-listed parameters, we have:

[tex]f = \dfrac{64}{\dfrac{2600 \times 0.00034 \times d}{\dfrac{\pi}{4}(d)^2 \times 0.002}}[/tex]

[tex]f = \dfrac{64}{2600 \times 0.00034 \times d} \times \dfrac{\dfrac{\pi}{4}(d)^2 \times 0.002}{1}[/tex]

f = 0.1137d

From equation (1), Recall that:

[tex]\mathsf{\dfrac{\Delta P}{\rho g}= \dfrac{8fLQ^2}{\pi^2gd^5}}[/tex]

[tex]\mathsf{\dfrac{\Delta P}{\rho }= \dfrac{8fLQ^2}{\pi^2d^5}}[/tex]

Replacing the values, we have;

[tex]\mathsf{\dfrac{1261.74}{2600}= \dfrac{8\times 0.1173(d) \times (2784) \times (0.00034)^2}{\pi^2(d)^5}}[/tex]

[tex]\mathsf{0.48528= \dfrac{2.966\times 10^{-5}}{(d)^4}}[/tex]

[tex]\mathsf{d^4= \dfrac{2.966\times 10^{-5}}{0.48528}}[/tex]

[tex]\mathsf{d^4= 6.11193538 \times 10^{-5}}[/tex]

[tex]\mathbf{d = \sqrt[4]{ 6.11193538 \times 10^{-5}}}[/tex]

d = 0.0884 m

d = 88.4 mm

since 1 mm = 0.0393701 inch

88.4 mm will be = 3.48 inches

Therefore, we can conclude that the diameter of the pipe = 3.48 inches

Learn more about volumetric flow rate here:

https://brainly.com/question/15119966?referrer=searchResults