Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.)
g(t) = 6 + t + t2/square root t

Respuesta :

Answer:

[tex]6t + \frac{t^2}{2}+2/5t^{5/2} + C[/tex]

Step-by-step explanation:

Given the expression;

g(t) = 6 + t + t²/√t

This can be rewritten as;

g(t) = 6 + t +t²/t^1/2

g(t) = 6 + t +t^{2-1/2}

g(t) = 6 + t +t^3/2

Integrate the result

[tex]\int\limits {(6 + t+t^{3/2}}) \, dt\\[/tex]

Using the formula x^{n+1}/n+1

[tex]\int\limits {(6 + t+t^{3/2}}) \, dt\\ = 6t + \frac{t^2}{2}+\frac{t^{3/2+1}}{3/2 + 1} \\ = 6t + \frac{t^2}{2}+\frac{t^{5/2}}{5/2} \\= 6t + \frac{t^2}{2}+2/5t^{5/2} + C[/tex]

An antiderivative is a function that reverses what the derivative does.

Antiderivative is also known as integration.

Antiderivative of given function is  [tex]6t+\frac{t^{2} }{2}+\frac{2}{5}t^{5/2}+C[/tex]

Antiderivative ,    [tex]\int\limits^ {}t^{n} \, dt=\frac{t^{n+1} }{n+1} +C[/tex]

So,  [tex]\int\limits {(6+t+t^{2}/\sqrt{t} )} \, dt =\int\limits {(6+t+t^{3/2} )} \, dt\\\\=6t+t^{2}/2 + \frac{t^{3/2+1} }{3/2+1}[/tex]

     [tex]\int\limits {g(t)} \, dt=6t+\frac{t^{2} }{2}+\frac{2}{5}t^{5/2}+C[/tex]

Learn more:

https://brainly.com/question/21629687