Respuesta :

Answer:

The  two zeros of the quadratic function are:

[tex]x=\frac{2}{3},\:x=-\frac{2}{3}[/tex]

Step-by-step explanation:

Given the expression

[tex]9x^2-4[/tex]

In order to determine the zeros of the quadratic function, we get the equation

[tex]9x^2-4=0[/tex]

Add 4 to both sides

[tex]9x^2-4+4=0+4[/tex]

Simplify

[tex]9x^2=4[/tex]

Divide both sides by 9

[tex]\frac{9x^2}{9}=\frac{4}{9}[/tex]

Simplify

[tex]x^2=\frac{4}{9}[/tex]

For x² = f(a) the solutions are: [tex]x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]

[tex]x=\sqrt{\frac{4}{9}},\:x=-\sqrt{\frac{4}{9}}[/tex]

solving

[tex]x=\sqrt{\frac{4}{9}}[/tex]

   [tex]=\frac{\sqrt{4}}{\sqrt{9}}[/tex]

   [tex]=\frac{2}{3}[/tex]

also solving

[tex]x=-\sqrt{\frac{4}{9}}[/tex]

  [tex]=-\frac{\sqrt{4}}{\sqrt{9}}[/tex]

  [tex]=-\frac{2}{3}[/tex]

Therefore, the  two zeros of the quadratic function are:

[tex]x=\frac{2}{3},\:x=-\frac{2}{3}[/tex]