Answer:
See Explanation
Explanation:
The question is incomplete as the data set are missing. However, I'll use the following data to answer your question:
5,12,3,18,6,8,2,10
Start by calculating the mean:
[tex]Mean = \frac{\sum x}{n}[/tex]
[tex]Mean= \frac{5+12+3+18+6+8+2+10}{8}[/tex]
[tex]Mean= \frac{64}{8}[/tex]
[tex]Mean = 8[/tex]
Standard deviation is calculated using:
[tex]SD = \sqrt{\frac{(x_i - Mean)^2}{n}}[/tex]
This gives:
[tex]SD = \sqrt{\frac{(5 - 8)^2+(12 - 8)^2+(3 - 8)^2+(18 - 8)^2+(6 - 8)^2+(8 - 8)^2+(2 - 8)^2+(10 - 8)^2}{8}}[/tex]
[tex]SD = \sqrt{\frac{(-3)^2+(4)^2+(- 5)^2+(10)^2+(-2)^2+(0)^2+( - 6)^2+(2)^2}{8}}[/tex]
[tex]SD = \sqrt{\frac{9+16+25+100+4+0+36+4}{8}}[/tex]
[tex]SD = \sqrt{\frac{194}{8}}[/tex]
[tex]SD = \sqrt{24.25}[/tex]
[tex]SD = 4.92[/tex]
Apply the above steps in the original question, then you will get your correct answer.