Respuesta :

Answer:

[tex]Diameter = 16[/tex]

Step-by-step explanation:

Given

[tex]\theta = 72[/tex]

[tex]Sector = \frac{64}{5}\pi[/tex]

Required

Calculate the diameter

The area of a sector is:

[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]

Substitute values for Area and [tex]\theta[/tex]

[tex]\frac{64}{5}\pi = \frac{72}{360} * \pi r^2[/tex]

Divide both sides by [tex]\pi[/tex]

[tex]\frac{64}{5} = \frac{72}{360} * r^2[/tex]

Make [tex]r^2[/tex] the subject

[tex]\frac{64*360}{5*72} = r^2[/tex]

[tex]\frac{64*360}{360} = r^2[/tex]

[tex]64 = r^2[/tex]

Take positive square roots of both sides

[tex]\sqrt{64} = r[/tex]

[tex]8 = r[/tex]

[tex]r = 8[/tex]

The diameter is then calculated as:

[tex]Diameter = 2r[/tex]

[tex]Diameter = 2*8[/tex]

[tex]Diameter = 16[/tex]