Respuesta :

Answer:

[tex](\frac{1}{6}, \frac{1}{2})[/tex] or [tex](0.167,0.5)[/tex]

Step-by-step explanation:

Given

[tex]3x + y =1[/tex]

[tex]15x + y = 3[/tex]

Required

Determine the solution

We'll solve using elimination method.

Subtract the first equation from the second:

[tex]15x + y = 3[/tex]

[tex]3x + y =1[/tex]

[tex]--------[/tex]

[tex]15x - 3x + y - y = 3 - 1[/tex]

[tex]15x - 3x + y - y = 3 - 1[/tex]

[tex]15x - 3x = 3 - 1[/tex]

[tex]12x = 2[/tex]

Make x the subject:

[tex]x = \frac{2}{12}[/tex]

[tex]x = \frac{1}{6}[/tex]

[tex]x =0.167[/tex]

Substitute [tex]\frac{1}{6}[/tex] for x in the first equation

[tex]3x + y =1[/tex]

[tex]3(\frac{1}{6}) + y = 1[/tex]

[tex]\frac{1}{2} + y = 1[/tex]

Make y the subject

[tex]y = 1 -\frac{1}{2}[/tex]

[tex]y = \frac{2-1}{2}[/tex]

[tex]y = \frac{1}{2}[/tex]

[tex]y = 0.5[/tex]

Hence, the solution is:

[tex](\frac{1}{6}, \frac{1}{2})[/tex] or [tex](0.167,0.5)[/tex]