Given:
Width of a rectangle = [tex]2x+4[/tex]
Length of the rectangle = [tex]6x+12[/tex]
To find:
The ratio of the width to the length.
Solution:
We need to find the ratio of the width to the length.
[tex]\text{Required Ratio}=\dfrac{\text{Width}}{\text{Length}}[/tex]
Putting the given values, we get
[tex]\text{Required Ratio}=\dfrac{2x+4}{6x+12}[/tex]
[tex]\text{Required Ratio}=\dfrac{2(x+2)}{6(x+2)}[/tex]
[tex]\text{Required Ratio}=\dfrac{2}{6}[/tex]
[tex]\text{Required Ratio}=\dfrac{1}{3}[/tex]
[tex]\text{Required Ratio}=1:3[/tex]
Therefore, the ratio of the width to the length is 1:3.