Respuesta :

Given:

The polynomial is

[tex]4x^3+25x^2+6x[/tex]

To find:

The solutions of given polynomial by factoring.

Solution:

Let the polynomial be

[tex]P(x)=4x^3+25x^2+6x[/tex]

It can be written as

[tex]P(x)=x(4x^2+25x+6)[/tex]

Splitting the middle term, we get

[tex]P(x)=x(4x^2+24x+x+6)[/tex]

[tex]P(x)=x(4x(x+6)+1(x+6))[/tex]

[tex]P(x)=x(x+6)(4x+1)[/tex]

For solutions, [tex]P(x)=0[/tex].

[tex]x(x+6)(4x+1)=0[/tex]

[tex]x=0\text{ and }(x+6)=0\text{ and }(4x+1)=0[/tex]

[tex]x=0\text{ and }x=-6\text{ and }x=-\dfrac{1}{4}[/tex]

Therefore, the solutions of given polynomial are 0, -6 and [tex]-\dfrac{1}{4}[/tex]. So, all options are incorrect because they are incomplete.