Respuesta :

Answer:

[tex]M = (2,1)[/tex]

Step-by-step explanation:

Represent the diagonals as:

[tex]A =(-2,-1)[/tex]

[tex]B =(1,3)[/tex]

[tex]C =(6,3)[/tex]

[tex]D = (3,-1)[/tex]

Required

Determine the coordinate of the intersection

To do this, we simply calculate the midpoint of AC or BD.

For AC:

[tex](x_1,y_1) = (-2,-1)[/tex]

[tex](x_2,y_2) = (6,3)[/tex]

The midpoint is:

[tex]M = \frac{1}{2}\{(x_1+x_2),(y_1+y_2)\}[/tex]

This gives:

[tex]M = \frac{1}{2}\{(-2+6),(-1+3)\}[/tex]

[tex]M = \frac{1}{2}\{(4),(2)\}[/tex]

[tex]M = (\frac{1}{2} * 4,\frac{1}{2} * 2)[/tex]

[tex]M = (2,1)[/tex]

For BD:

[tex](x_1,y_1) = (1,3)[/tex]

[tex](x_2,y_2) = (3,-1)[/tex]

The midpoint is:

[tex]M = \frac{1}{2}\{(x_1+x_2),(y_1+y_2)\}[/tex]

This gives:

[tex]M = \frac{1}{2}\{(1+3),(3-1)\}[/tex]

[tex]M = \frac{1}{2}\{(4),(2)\}[/tex]

[tex]M = (\frac{1}{2} * 4,\frac{1}{2} * 2)[/tex]

[tex]M = (2,1)[/tex]

Notice the midpoints are the same:

[tex]M = (2,1)[/tex]

Hence, the coordinates of the intersection is (2,1)