Write the equation of the line that passes through the points (-9, -8) and (–6,6).
Put your answer in fully reduced point-slope form, unless it is a vertical or horizontal
line.

Respuesta :

Answer:

Slope - intercept form    [tex]y = \frac{14}{3} x + 34[/tex]

Step-by-step explanation:

Explanation:-

Given points are ( -9 ,-8 ) and (-6,6)

slope of given two points

    [tex]m = \frac{y_{2} -y_{1} }{x_{2}-x_{1} } = \frac{6-(-8)}{-6-(-9)} = \frac{14}{3}[/tex]

The equation of the straight line passing through the points and having slope

          [tex]y - y_{1} = m ( x - x_{1} )[/tex]

        [tex]y - (-8) = \frac{14}{3} ( x - (-9) )[/tex]

          3 y + 2 4 = 14 x + 126

           3 y = 14 x + 126 - 24

          3 y = 14 x + 102

            [tex]y = \frac{14}{3} + \frac{102}{3}[/tex]

           [tex]y = \frac{14}{3} x + 34[/tex]

Slope - intercept form  y= mx +C

Slope - intercept form    [tex]y = \frac{14}{3} x + 34[/tex]