Answer:
Slope - intercept form [tex]y = \frac{14}{3} x + 34[/tex]
Step-by-step explanation:
Explanation:-
Given points are ( -9 ,-8 ) and (-6,6)
slope of given two points
[tex]m = \frac{y_{2} -y_{1} }{x_{2}-x_{1} } = \frac{6-(-8)}{-6-(-9)} = \frac{14}{3}[/tex]
The equation of the straight line passing through the points and having slope
[tex]y - y_{1} = m ( x - x_{1} )[/tex]
[tex]y - (-8) = \frac{14}{3} ( x - (-9) )[/tex]
3 y + 2 4 = 14 x + 126
3 y = 14 x + 126 - 24
3 y = 14 x + 102
[tex]y = \frac{14}{3} + \frac{102}{3}[/tex]
[tex]y = \frac{14}{3} x + 34[/tex]
Slope - intercept form y= mx +C
Slope - intercept form [tex]y = \frac{14}{3} x + 34[/tex]