A speedboat moving at 29.0 m/s approaches a no-wake buoy marker 100 m ahead. The pilot slows the boat with a constant acceleration of -3.4 m/s2 by reducing the throttle. (a) How long does it take the boat to reach the buoy

Respuesta :

Answer:

[tex]t =4.8sec[/tex]

Explanation:

From the question we are told that

Velocity of speed boat [tex]V=29.0m/s[/tex]

Distance to Marker [tex]d=100[/tex]

Acceleration of [tex]a=-3.4m/s^2[/tex]

Generally the Newtons 3rd motion equation is given as

 [tex]v^2 = u^2 + 2 * a* s[/tex]

 [tex]v^2 = 29^2 + 2 * -3.4* 100[/tex]

 [tex]v = \sqrt{161}[/tex]

 [tex]v=12.68m/s[/tex]

Generally the Newton's first equation of motion is given as

 [tex]v = u + a*t[/tex]

 [tex]12.68 = 29 -3.4*t[/tex]

 [tex]12.68-29 = -3.4t[/tex]

 [tex]-16.32 = -3.4t[/tex]

 [tex]t =\frac{-16.32}{-3.4}[/tex]

 [tex]t =4.8sec[/tex] .