Answer: The gravitational force between the sun and Saturn is [tex]3.69\times 10^{22}N[/tex]
Explanation:
[tex]F=\frac{Gm_1m_2}{r^2}[/tex]
where F = gravitational force = ?
G = gravitational constant = [tex]6.674\times 10^{-11} Nm^2kg^{-2}[/tex]
[tex]m_1[/tex] = mass of sun = [tex]1.99\times 10^{30}kg[/tex]
[tex]m_2[/tex] = mass of saturn = [tex]5.68\times 10^{26}kg[/tex]
r = distance between sun and saturn = [tex]1.43\times 10^{12}m[/tex]
[tex]F=\frac{6.674\times 10^{-11}Nm^2kg^{-2}\times 1.99\times 10^{30}kg\times 5.68\times 10^{26}kg}{(1.43\times 10^{12}m)^2}[/tex]
[tex]F=3.69\times 10^{-90}N[/tex]
Thus the gravitational force between the sun and Saturn is [tex]3.69\times 10^{22}N[/tex]