Respuesta :
Answer:
[tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]
General Formulas and Concepts:
Alg I
- Terms/Coefficients
- Factor
- Exponential Rule [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]
Pre-Calc
[Right Triangle Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is a leg
- c is hypotenuse
Trigonometric Ratio: [tex]\displaystyle sec(\theta) = \frac{1}{cos(\theta)}[/tex]
Trigonometric Identity: [tex]\displaystyle tan^2\theta + 1 = sec^2\theta[/tex]
TI: [tex]\displaystyle sin(2x) = 2sin(x)cos(x)[/tex]
TI: [tex]\displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}[/tex]
Calc
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
IP [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
U-Trig Substitution: x² + a² → x = atanθ
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}[/tex]
Step 2: Identify Sub Variables Pt.1
Rewrite integral [factor expression]:
[tex]\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}[/tex]
Identify u-trig sub:
[tex]\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta[/tex]
Later, back-sub θ (integrate w/ respect to x):
[tex]\displaystyle tan\theta = \frac{9x}{2} \rightarrow \theta = arctan(\frac{9x}{2})[/tex]
Step 3: Integrate Pt.1
- [Int] Sub u-trig variables: [tex]\displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex]
- [Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta[/tex]
- [Int] Evaluate exponents: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta[/tex]
- [Int] Factor: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta[/tex]
- [Int] Rewrite [TI]: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta[/tex]
- [Int] Evaluate exponents: [tex]\displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta[/tex]
- [Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta[/tex]
- [Int] Divide [ER - D]: [tex]\displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta[/tex]
- [Int] Rewrite [TR]: [tex]\displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta[/tex]
- [Int] Rewrite [TI]: [tex]\displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta[/tex]
- [Int] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta[/tex]
- [Int] Rewrite [Int Prop - A/S]: [tex]\displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta][/tex]
Step 4: Identify Sub Variables Pt.2
Determine u-sub for trig int:
u = 2θ
du = 2dθ
Step 5: Integrate Pt.2
- [Ints] Rewrite [Int Prop - MC]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta][/tex]
- [Int] U-Sub: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta][/tex]
- [Ints] Integrate [Trig/Int Rule - RPR]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C][/tex]
- [Expression] Back Sub: [tex]\displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C][/tex]
- [Exp] Rewrite [TI]: [tex]\displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C][/tex]
- [Exp] Multiply: [tex]\displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C][/tex]
- [Exp] Back Sub: [tex]\displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C][/tex]
Step 6: Triangle
Find trig values:
[tex]\displaystyle tan\theta = \frac{9x}{2}[/tex]
[tex]\displaystyle \theta = arctan(\frac{9x}{2})[/tex]
tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:
sinθ = opposite / hypotenuse
cosθ = adjacent / hypotenuse
Leg a = 2
Leg b = 9x
Leg c = ?
- Sub variables [PT]: [tex]\displaystyle 2^2 + (9x)^2 = c^2[/tex]
- Evaluate exponents: [tex]\displaystyle 4 + 81x^2 = c^2[/tex]
- [Equality Property] Square root both sides: [tex]\displaystyle \sqrt{4 + 81x^2} = c[/tex]
- Rewrite: [tex]c = \sqrt{81x^2 + 4}[/tex]
Substitute into trig ratios:
[tex]\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}[/tex]
[tex]\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}[/tex]
Step 7: Integrate Pt.3
- [Exp] Sub variables [TR]: [tex]\displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C][/tex]
- [Exp] Multiply: [tex]\displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C][/tex]
- [Exp] Distribute: [tex]\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C[/tex]