Find the value of x that makes lines u and v parallel, answer needed

Given:
u and v are parallel lines.
To find:
The value of x.
Solution:
If a transversal line intersect the two parallel lines, then
(1) Corresponding angles are congruent.
(2) Same sides interior angles are supplementary angles and their sum is 180 degrees.
15.
[tex]23x-2=90[/tex] (Corresponding angles)
[tex]23x=90+2[/tex]
[tex]x=\dfrac{92}{23}[/tex]
[tex]x=4[/tex]
Therefore, the value of x is 4.
16.
[tex](x+106)+(x+86)=180[/tex] (Same sided interior angles)
[tex]2x+192=180[/tex]
[tex]2x=180-192[/tex]
[tex]2x=-12[/tex]
Divide both sides by 2.
[tex]x=\dfrac{-12}{2}[/tex]
[tex]x=-6[/tex]
Therefore, the value of x is -6.