The Moore family’s backyard is shaped like a trapezoid as shown. The area of the backyard is 8,580 square feet. What is the perimeter of the yard? Explain how you found your answer.

Respuesta :

Answer:

See Explanation

Step-by-step explanation:

Your question do not have enough details for it to be answered. I will solve your question on a general terms using the attached image of a trapezoid

Given

[tex]Area = 8580ft^2[/tex]

From the attachment, we have:

[tex]BC = 100ft[/tex]

[tex]AD = 80ft[/tex]

[tex]h = 60ft[/tex] --- height

The perimeter (P) of a trapezoid is:

[tex]P = AB + BC + CD + AD[/tex]

Substitute values for AD, BC

[tex]P = AB + 100 + CD + 80[/tex]

Collect Like Terms

[tex]P = AB + CD + 80+ 100[/tex]

[tex]P = AB + CD + 180[/tex]

Next, is to calculate the lengths of AB and CD or the sum: AB + CD

The area of a trapezoid is:

[tex]Area = \frac{1}{2}(AB + CD) * h[/tex]

Substitute values for Area and h

[tex]8580= \frac{1}{2}(AB + CD) * 60[/tex]

Multiply both sides by 2

[tex]2*8580= \frac{1}{2}(AB + CD) * 60*2[/tex]

[tex]17160= (AB + CD) * 60[/tex]

Divide both sides by 60

[tex]\frac{17160}{60}= \frac{(AB + CD) * 60}{60}[/tex]

[tex]286 = AB + CD[/tex]

[tex]AB + CD=286[/tex]

Substitute 286 for AB + CD in: [tex]P = AB + CD + 180[/tex]

[tex]P = 286 + 180[/tex]

[tex]P = 466[/tex]

The perimeter of the backyard is 466ft.

The above steps should give you a hint on how to solve your actual question.

Ver imagen MrRoyal