Given:
The vertex form of a quadratic equation is
[tex]y=-5(x+2)^2-10[/tex]
To find:
The standard form of the given quadratic equation.
Solution:
We have,
[tex]y=-5(x+2)^2-10[/tex]
Using the formula [tex](a+b)^2=a^2+2ab+b^2[/tex], we get
[tex]y=-5(x^2+2(x)(2)+(2)^2)-10[/tex]
[tex]y=-5(x^2+4x+4)-10[/tex]
Using distributive property, we get
[tex]y=-5x^2-20x-20-10[/tex]
[tex]y=-5x^2-20x-30[/tex]
Therefore, the standard form of the given equation is [tex]y=-5x^2-20x-30[/tex].