Respuesta :

Given:

The expression is

[tex]\dfrac{10^0r^{-11}s}{3^2}[/tex]

To find:

The simplified answer using only positive exponents.

Solution:

We have,

[tex]\dfrac{10^0r^{-11}s}{3^2}[/tex]

[tex]=\dfrac{(1)r^{-11}s}{9}[/tex]

[tex]=\dfrac{r^{-11}s}{9}[/tex]

Using properties of exponents, we get

[tex]=\dfrac{s}{9r^{11}}[/tex]            [tex]\left[\because a^{-n}=\dfrac{1}{a^n}\right][/tex]

Therefore, the required answer is [tex]\dfrac{s}{9r^{11}}[/tex].

The required simplified value is [tex]\frac{s}{9r^{11}}[/tex]

Exponent: Exponent is defined as the method of expressing large numbers in terms of powers.

The given expression is,

[tex]10^0r^{-11}\frac{s}{3^2}[/tex]

The given expression can be simplified as,

[tex]10^0r^{-11}\frac{s}{3^2} =1\times r^{-11}\frac{s}{9} \\=\frac{s}{9r^{11}}[/tex]

So, the simplified value of the given expression is,

[tex]\frac{s}{9r^{11}}[/tex]

Learn more information about Exponent: https://brainly.com/question/8008182