Respuesta :
Given:
The expression is
[tex]\dfrac{10^0r^{-11}s}{3^2}[/tex]
To find:
The simplified answer using only positive exponents.
Solution:
We have,
[tex]\dfrac{10^0r^{-11}s}{3^2}[/tex]
[tex]=\dfrac{(1)r^{-11}s}{9}[/tex]
[tex]=\dfrac{r^{-11}s}{9}[/tex]
Using properties of exponents, we get
[tex]=\dfrac{s}{9r^{11}}[/tex] [tex]\left[\because a^{-n}=\dfrac{1}{a^n}\right][/tex]
Therefore, the required answer is [tex]\dfrac{s}{9r^{11}}[/tex].
The required simplified value is [tex]\frac{s}{9r^{11}}[/tex]
Exponent: Exponent is defined as the method of expressing large numbers in terms of powers.
The given expression is,
[tex]10^0r^{-11}\frac{s}{3^2}[/tex]
The given expression can be simplified as,
[tex]10^0r^{-11}\frac{s}{3^2} =1\times r^{-11}\frac{s}{9} \\=\frac{s}{9r^{11}}[/tex]
So, the simplified value of the given expression is,
[tex]\frac{s}{9r^{11}}[/tex]
Learn more information about Exponent: https://brainly.com/question/8008182