Astronomers discover a planet orbiting around a star similar to our sun that is 35 light years away. How fast must a rocket ship go if the round trip is to take no longer than 70 years in time for the astronauts aboard

Respuesta :

Answer:

[tex]v = 0.7071c[/tex]

Explanation:

Given

Distance to the planet = 35 light years. So, the entire distance is: 2 * 35 = 70.

[tex]\triangle{x'} = 70[/tex]

[tex]T_0 = 70\ years[/tex] i.e time of travel of the ship.

For the observer on earth, the time is:

[tex]T' = \gamma T_0[/tex]

The required speed so that it does not take more than 70 years is then calculated using:

[tex]\triangle x' = vT'[/tex]

Substitute [tex]T' = \gamma T_0[/tex]

[tex]\triangle x' = v\gamma T_0[/tex]

[tex]\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}[/tex]

So, we have:

[tex]\triangle x' = \frac{vT_0}{\sqrt{1 - v^2/c^2}}[/tex]

Make v the subject of formula.

Square both sides

[tex]\triangle x'^2 = \frac{v^2T^2_0}{1 - v^2/c^2}[/tex]

Cross Multiply

[tex](1 - \frac{v^2}{c^2}) *\triangle x'^2 = v^2T^2_0[/tex]

Divide both sides by [tex]\triangle x'^2[/tex]

[tex](1 - \frac{v^2}{c^2}) = \frac{v^2T^2_0}{\triangle x'^2}[/tex]

Divide through by [tex]v^2[/tex]

[tex](\frac{1}{v^2} - \frac{v^2}{v^2*c^2}) = \frac{v^2T^2_0}{v^2\triangle x'^2}[/tex]

[tex]\frac{1}{v^2} - \frac{1}{c^2} = \frac{T^2_0}{\triangle x'^2}[/tex]

Make [tex]\frac{1}{v^2}[/tex] the subject

[tex]\frac{1}{v^2} = \frac{T^2_0}{\triangle x'^2} + \frac{1}{c^2}[/tex]

Inverse both sides

[tex]v^2 = \frac{1}{\frac{T^2_0}{\triangle x'^2} + \frac{1}{c^2}}[/tex]

Take square root of both sides

[tex]v = \sqrt{\frac{1}{\frac{T^2_0}{\triangle x'^2} + \frac{1}{c^2}}}[/tex]

Substitute values for [tex]T_0[/tex] and [tex]\triangle x[/tex]

[tex]v = \sqrt{\frac{1}{\frac{70^2}{(70c)^2} + \frac{1}{c^2}}}[/tex]

[tex]v = \sqrt{\frac{1}{\frac{70^2}{70^2*c^2} + \frac{1}{c^2}}}[/tex]

[tex]v = \sqrt{\frac{1}{\frac{1}{c^2} + \frac{1}{c^2}}}[/tex]

[tex]v = \sqrt{\frac{1}{\frac{2}{c^2}}}[/tex]

[tex]v = \sqrt{\frac{c^2}{2}}[/tex]

[tex]v = c\sqrt{\frac{1}{2}}[/tex]

[tex]v = c * 0.7071[/tex]

[tex]v = 0.7071c[/tex]