Respuesta :
Answer:
The answer is below
Step-by-step explanation:
Let s(t) represent the amount of salt in the tank at time t. Therefore:
ds / dt = (rate of salt flowing into the tank) - (rate of salt going out of the tank)
[tex]\frac{ds}{dt}=[(0.08\ kg/L*6\ L/min)+(0.09\ kg/L*5\ L/min)]-(\frac{s\ kg}{1000\ L}*11\ L/min ) \\\\\frac{ds}{dt}=(0.48\ kg/min+0.45\ kg/min)-(\frac{11s}{1000}\ kg/min )\\\\\frac{ds}{dt}=0.93\ kg/min-\frac{11s}{1000}\ kg/min \\\\\frac{ds}{dt}=\frac{930-11s}{1000}\ kg/min \\\\\frac{ds}{930-11s}=\frac{1}{1000}dt\\\\Integrating:\\\\\int\limits { \frac{ds}{930-11s}} \, ds=\int\limits {\frac{1}{1000}} \, dt\\\\-\frac{1}{11}ln(930-11s)=\frac{t}{1000}+C\\\\multiply\ through\ by\ -11:[/tex]
[tex]ln(930-11s)= - \frac{11t}{1000}+A\\\\Take \ exponential:\\\\930-11s=e^{ - \frac{11t}{1000}+A}\\\\930-11s=C_1e^{ - \frac{11t}{1000}}\\\\11s=930-C_1e^{ - \frac{11t}{1000}}\\\\s=\frac{930-C_1e^{ - \frac{11t}{1000}}}{11} \\\\To \ find\ C_1,s(0)=0.Hence:\\\\0=\frac{930-C_1e^{ - \frac{11(0)}{1000}}}{11} \\\\0=930-C_1\\\\C_1=930\\\\s(t)=\frac{930-930e^{ - \frac{11t}{1000}}}{11} \\\\s(t)=930(\frac{1-e^{ - \frac{11t}{1000}}}{11})[/tex]
A) So, the required value is [tex]1.01-\frac{11S}{1000}[/tex].
B) The required value is [tex]\frac{1010}{11} (1-e^{-11/1000t} )[/tex]
Differential Equation:
A differential equation is an equation that contains one or more terms and the derivatives of one variable (i.e., dependent variable) with respect to the other variable (i.e., independent variable).
[tex]\frac{dy}{dx} =f(x)[/tex]
(A) Let [tex]S(t)[/tex] denotes the number of kg of the salt in the tank at the time [tex]t[/tex] minutes.
Then,
[tex]\frac{ds}{dt}=[/tex](rate of salt in to tank)-(rate of salt of tank)
[tex]\frac{ds}{dt}=\left ( 0.08\times 0.09\times 5 \right )-\left ( \frac{s\left (t\right )}{1000}\times 11 \right ) \\ \therefore \frac{ds}{dt}=1.01-\frac{11S}{1000}[/tex]
(B)
[tex]\frac{ds}{dt}=\frac{101}{100}-\frac{11S}{1000} \\ \Rightarrow \frac{ds}{dt}=\frac{1010-11S}{1000} \\ \Rightarrow \frac{ds}{1010-11S}=\frac{dt}{1000}[/tex]
Integrating we get,
[tex]-\frac{1}{11}I_n|1010-11S|=\frac{t}{1000}+In \ C_1 \\ \Rightarrow 1010-11S=C_1e^{-11/1000t} \\ S(t)=\frac{1010-C_1e^{-11/1000t}}{11}[/tex]
Initially, [tex]S(0)=0\\\Rightarrow C_1=1010[/tex]
Then the required solution is,
[tex]\therefore S(t)=\frac{1010}{11} (1-e^{-11/1000t} )[/tex]
Learn more about the topic of Differential Equation: https://brainly.com/question/24546081