For the following sample of n 5 10 scores:
a. Assume that the scores are measurements of a discrete variable and find the median.
b. Assume that the scores are measurements of a continuous variable and find the median by locating the precise midpoint of the distribution.
Scores: 2, 3, 4, 4, 5, 5, 5, 6, 6, 7

Respuesta :

Answer:

Step-by-step explanation:

Given that:

scores = 2, 3, 4, 4, 5, 5, 5, 6, 6, 7

Since the scores are already in ascending order; then the median which is the middle number will be:

median = (5th term + 6 term)/2

median = (5+5)/2

median = 10/2

meian = 5

b)

Use the cumulative percentage table

X     frequency    cumulative frequency     cumulative percentage

2         1                     1                                            10%

3         1                     2                                           20%

4        2                     4                                            40%

5        3                     7                                             70%

6        2                     9                                             90%

7        1                     10                                             100%

fraction = the no. required to reach 50%/ no. in that interval

= 1/3

Since we have a total of 4 boxes when we reach the value of 4.5

The median of the continuous variable = 4.5 + (1/3)

The median of the continuous variable = 4.833

The median of the continuous variable ≅ 5

Answer:

Step-by-step explanation:

Given that:

scores = 2, 3, 4, 4, 5, 5, 5, 6, 6, 7

Since the scores are already in ascending order; then the median which is the middle number will be:

median = (5th term + 6 term)/2

median = (5+5)/2

median = 10/2

median = 5