Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. the volume of added base required to reach the equivalence point c. the pH at 5.0 mL of added base d. the pH at one-half of the equivalence point e. the pH at the equivalence point f. the pH after adding 5.0 mL of base beyond the equivalence point

Respuesta :

Answer:

Explanation:

Given that:

Concentration of [tex]HC_2H_3O_2 \ (M_1)[/tex] = 0.105 M

Volume of  [tex]HC_2H_3O_2 \ (V_1)[/tex] = 20.0 mL

Concentration of [tex]NaOH (M_2)[/tex] = 0.125 M

The  chemical reaction can be expressed as:

[tex]HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}[/tex]

Using the ICE Table to determine the equilibrium concentrations.

          [tex]HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}[/tex]

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

[tex]K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}[/tex]

[tex]K_a = \dfrac{(x)(x)}{(0.105-x)}[/tex]

Recall that the ka for [tex]HC_2H_3O_2= 1.8 \times 10^{-5}[/tex]

Then;

[tex]1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}[/tex]

[tex]1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}[/tex]

By solving the above mathematical expression;

x = 0.00137 M

[tex]H_3O^+ = x = 0.00137 \ M \\ \\ pH = - log [H_3O^+] \\ \\ pH = - log ( 0.00137 )[/tex]

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

[tex]M_1 V_1 = M_2 V_2[/tex]

[tex]V_2= \dfrac{M_1V_1}{M_2}[/tex]

[tex]V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}[/tex]

[tex]V_2 = 16.8 mL[/tex]

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of [tex]HC_2H_3O_2 =[/tex] molarity × volume

[tex]= 0.105 \ M \times 20.0 \times 10^{-3} \ L[/tex]

[tex]= 2.1 \times 10^{-3}[/tex]

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = [tex]0.625 \times 10^{-3}[/tex]

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    [tex]HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}[/tex]

Initial moles   [tex]2.1*10^{-3}[/tex]       [tex]0.625 * 10^{-3}[/tex]           0                      0

F(moles) [tex](2.1*10^{-3} - 0.625 \times 10^{-3})[/tex]    0      [tex]0.625 \times 10^{-3}[/tex]         [tex]0.625 \times 10^{-3}[/tex]

The pH of the solution is then calculated as follows:

[tex]pH = pKa + log \dfrac{[base]} {[acid]}[/tex]

Recall that:

pKa for [tex]HC_2H_3O_2=4.74[/tex]

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

[tex]pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}[/tex]

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the [tex](C_2H_3O^-_2)[/tex] with [tex]H_2O[/tex]

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of [tex](C_2H_3O^-_2)[/tex] = moles/volume

= [tex]\dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}[/tex]

= 0.0571 M

Now, using the ICE table to determine the concentration of [tex]H_3O^+[/tex];

             [tex]C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}[/tex]

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for [tex]HC_2H_3O_2[/tex] = [tex]1.8 \times 10^{-5}[/tex]

[tex]K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} } \\ \\ K_b = 5.6 \times 10^{-10}[/tex]

[tex]k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}[/tex]

[tex]5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}[/tex]

[tex]x = [OH^-] = 5.6 \times 10^{-6} \ M[/tex]

[tex][H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }[/tex]

[tex][H_3O^+] =1.77 \times 10^{-9}[/tex]

[tex]pH =-log [H_3O^+] \\ \\ pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }[/tex]

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             [tex]HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}[/tex]

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[tex][OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 ) \ L}[/tex]

[tex][OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}[/tex]

[tex][OH^-] = 0.0149 \ M[/tex]

From above; we can determine the concentration of [tex]H_3O^+[/tex] by using the following method:

[tex][H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}[/tex]

[tex][H_3O^+] = 6.7 \times 10^{-13}[/tex]

[tex]pH = - log [H_3O^+][/tex]

[tex]pH = -log (6.7 \times 10^{-13} )[/tex]

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17