Answer: Thus 24.0 g of [tex]SO_2[/tex] would be needed.
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} O_2=\frac{6.00g}{32g/mol}=0.1875moles[/tex]
[tex]2SO_2(g)+O_2(g)\rightarrow 2SO_3(l)[/tex]
According to stoichiometry :
1 mole of [tex]O_2[/tex] require = 2 moles of [tex]SO_2[/tex]
Thus 0.1875 moles of [tex]O_2[/tex] will require=[tex]\frac{2}{1}\times 0.1875=0.375moles[/tex] of [tex]SO_2[/tex]
Mass of [tex]SO_2=moles\times {\text {Molar mass}}=0.375moles\times 64g/mol=24.0g[/tex]
Thus 24.0 g of [tex]SO_2[/tex] would be needed to completely react with 6.00 g of [tex]O_2[/tex] such that all reactants could be consumed.