Respuesta :

Answer:

The result of the integral is [tex]-\frac{\cos^3{10x}}{30} + C[/tex]

Step-by-step explanation:

We are given the following integral:

[tex]\int \sin{(10x)}\cos^{2}{(10x)} dx[/tex]

I am going to solve by substitution, using [tex]u = \cos{10x}[/tex], so [tex]du = -10\sin{10x}dx, dx = -\frac{du}{10\sin{10x}}[/tex]. So, we have

[tex]-\frac{1}{10} \int u^2 du[/tex]

Which has the following result:

[tex]-\frac{u^3}{30} + C[/tex]

Going back to x, the result of the integral is

[tex]-\frac{\cos^3{10x}}{30} + C[/tex]