Answer:
The answer is "[tex]12682.267\ \ \frac{W}{m^2}[/tex]"
Explanation:
Calculating the mass flow rate of fluid:
[tex]m= \rho AV[/tex]
[tex]= \rho \frac{\pi}{4} D^2\ V\\\\= 100 \times \frac{\pi}{4} \times (0.0127)^2\times 0.2\\\\=0.0253 \ \frac{kg}{s}\\\\[/tex]
Calculating the amount of heat transfer.
[tex]q =m\timesC_p(T_{m,0}-T_{m,i})[/tex]
[tex]=0.0253 \times 4000 (75-25)\\\\=0.0253 \times 4000(50)\\\\=0.0253 \times 200,000 \\\\= 5060 \ W[/tex]
Calculating the required value for heat flux:
[tex]q"=\frac{q}{A_s}[/tex]
[tex]=\frac{q}{\pi DL}\\\\= \frac{5060}{\pi \times 0.0127 \times 10}\\\\= 12682.267 \frac{W}{m^2}\\[/tex]