Respuesta :

Answer:

[tex]a= 2[/tex]

[tex]b = 3[/tex]

Step-by-step explanation:

Given

[tex]p(x,y) = (6,0)[/tex]

[tex]q(x,y) = (3,2)[/tex]

[tex]ax + by = 12[/tex]

Required

Find a and b

In [tex]p(x,y) = (6,0)[/tex], [tex]x = 6[/tex] and [tex]y = 0.[/tex]

This gives:

[tex]a*6 + b*0 = 12[/tex]

[tex]6a = 12[/tex]

Divide by 6

[tex]a= 2[/tex]

In [tex]q(x,y) = (3,2)[/tex]. [tex]x = 3[/tex] and [tex]y = 2.[/tex]

This gives:

[tex]a*3 + b*2 = 12[/tex]

[tex]3a + 2b = 12[/tex]

Substitute 2 for a

[tex]3*2 + 2b = 12[/tex]

[tex]6 + 2b = 12[/tex]

Collect Like Terms

[tex]2b = 12 - 6[/tex]

[tex]2b = 6[/tex]

Divide by 2

[tex]b = 3[/tex]