Answer:
See Below.
Step-by-step explanation:
Statements: Reasons:
[tex]1)\text{ }\angle AOD=180[/tex] Straight Angle Theorem
[tex]2)\text{ } \angle AOB+\angle BOC+\angle COD=\angle AOD[/tex] Angle Addition
[tex]3)\text{ } \angle AOB+\angle BOC+\angle COD=180[/tex] Substitution
[tex]\displaystyle 4)\text{ } \angle AOB=\frac{1}{2}\angle BOC[/tex] Given
[tex]\displaystyle 5)\text{ } \angle BOC=\frac{2}{3}\angle COD[/tex] Given
[tex]\displaystyle 6)\text{ } \frac{1}{2}\angle BOC+\frac{2}{3}\angle COD+\angle COD=180[/tex] Substitution
[tex]\displaystyle 7)\text{ } \frac{1}{2}\Big(\frac{2}{3}\angle COD\Big)+\frac{2}{3}\angle COD+\angle COD=180[/tex] Substitution
[tex]\displaystyle 8)\text{ } \frac{1}{3}\angle COD+\frac{2}{3}\angle COD+\angle COD=180[/tex] Multiplication
[tex]\displaystyle 9)\text{ } 2\angle COD=180[/tex] Addition
[tex]10)\text{ } \angle COD=90[/tex] Division Property of Equality
[tex]\displaystyle 11)\text{ } \frac{1}{2}\angle AOD=90[/tex] Division Property of Equality
[tex]\displaystyle 12)\text{ } \angle COD=\frac{1}{2}\angle AOD[/tex] Substitution