Respuesta :

Answer:

[tex]cos\ V = \frac{2\sqrt{29}}{29}[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

Find cos V

In trigonometry:

[tex]cos\theta = \frac{Adjacent}{Hypotenuse}[/tex]

In this case:

[tex]cos V= \frac{TV}{UV}[/tex]

Where

[tex]TV = 6[/tex]

and

[tex]UV^2 = TV^2 + TU^2[/tex] -- Pythagoras

[tex]UV^2 = 6^2 + 15^2[/tex]

[tex]UV^2 = 261[/tex]

Take square roots

[tex]UV = \sqrt{261[/tex]

[tex]UV = \sqrt{9*29[/tex]

[tex]UV = \sqrt{9} *\sqrt{29[/tex]

[tex]UV = 3\sqrt{29[/tex]

So:

[tex]cos V= \frac{TV}{UV}[/tex]

[tex]cos\ V = \frac{6}{3\sqrt{29}}[/tex]

[tex]cos\ V = \frac{2}{\sqrt{29}}[/tex]

Rationalize:

[tex]cos\ V = \frac{2}{\sqrt{29}}*\frac{\sqrt{29}}{\sqrt{29}}[/tex]

[tex]cos\ V = \frac{2\sqrt{29}}{29}[/tex]