Respuesta :

Answer:

[tex]tan(A) = \frac{3}{4}[/tex]

Step-by-step explanation:

Given

Right-angled triangle ABC

[tex]c = 10[/tex]  [tex]b = 8[/tex]

Required

Calculated tan(A)

First, we calculate the length of a.

Since the triangle is right-angled at C, then c is the hypotenuse and side a is the opposite of A.

So, we have:

[tex]c^2 = a^2 + b^2[/tex]

[tex]10^2 = a^2 + 8^2[/tex]

[tex]100 = a^2 + 64[/tex]

[tex]a^2 = 100 - 64[/tex]

[tex]a^2 = 36[/tex]

Take square roots

[tex]a = 6[/tex]

So:

[tex]tan(A) = \frac{a}{b}[/tex]

[tex]tan(A) = \frac{6}{8}[/tex]

[tex]tan(A) = \frac{3}{4}[/tex]