Respuesta :
Answer:
The value of k is:
[tex]k=-\frac{31}{4}[/tex]
Step-by-step explanation:
Given
The line containing the points (-3,k) and (4,8) is parallel to the line containing the points (5,3) and (1,-6).
To determine
what is the value of k?
To determine the value of k, the first step we need to do is to find the slope of the line containing the points (5,3) and (1,-6) using the formula
[tex]\mathrm{Slope}=m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Here:
- [tex]\left(x_1,\:y_1\right)=\left(5,\:3\right)[/tex]
- [tex]\left(x_2,\:y_2\right)=\left(1,\:-6\right)[/tex]
now substituting (x₁, y₁) = (5, 3) and (x₂, y₂) = (1, -6) in the formula
[tex]m=\frac{-6-3}{1-5}[/tex]
[tex]m=\frac{-9}{-4}[/tex]
Apply the fraction rule: [tex]\frac{-a}{-b}=\frac{a}{b}[/tex]
[tex]m=\frac{9}{4}[/tex]
Thus, we conclude that the slope of the line containing the points (5,3) and (1,-6) will be:
[tex]m=\frac{9}{4}[/tex]
Importing Tip:
- We know that the parallel lines have the same slopes, so the slope of the line containing the points (-3,k) and (4,8) will also be 9/4.
Thus, using the slope formula for the line containing the points (-3,k) and (4,8).
[tex]\mathrm{Slope}=m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Here:
- [tex]\left(x_1,\:y_1\right)=\left(-3,\:k\right)[/tex]
- [tex]\left(x_2,\:y_2\right)=\left(4,\:8\right)[/tex]
As we know that the parallel lines have the same slopes.
Thus, the second step we need to do is to substitute m = 9/4 in the slope formula
[tex]\frac{9}{4}=\frac{y_2-y_1}{x_2-x_1}[/tex]
now substituting (x₁, y₁) = (-3, k) and (x₂, y₂) = (4, 8) in the formula
[tex]\:\:\:\frac{9}{4}=\:\frac{8-k}{4-\left(-3\right)}[/tex]
switch sides
[tex]\frac{8-k}{4-\left(-3\right)}=\frac{9}{4}[/tex]
Multiply both sides by 7
[tex]\frac{7\left(8-k\right)}{4-\left(-3\right)}=\frac{9\cdot \:7}{4}[/tex]
Simplify
[tex]8-k=\frac{63}{4}[/tex]
Subtract 8 from both sides
[tex]8-k-8=\frac{63}{4}-8[/tex]
Simplify
[tex]-k=\frac{31}{4}[/tex]
Divide both sides by -1
[tex]\frac{-k}{-1}=\frac{\frac{31}{4}}{-1}[/tex]
Simplify
[tex]k=-\frac{31}{4}[/tex]
Therefore, the value of k is:
[tex]k=-\frac{31}{4}[/tex]
VERIFICATION:
As the value of k = -31/4.
So the first line will contain the points:
- (-3, -31/4)
- (4, 8)
Finding the slope between (-3, -31/4) and (4, 8) using the slope formula
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
Here:
- [tex]\left(x_1,\:y_1\right)=\left(-3,\:-\frac{31}{4}\right)[/tex]
- [tex]\left(x_2,\:y_2\right)=\left(4,\:8\right)[/tex]
so substituting (x₁, y₁) = (-3, -31/4) and (x₂, y₂) = (4, 8) in the formula
[tex]m=\frac{8-\left(-\frac{31}{4}\right)}{4-\left(-3\right)}[/tex]
Apply rule: [tex]-\left(-a\right)=a[/tex]
[tex]m=\frac{8+\frac{31}{4}}{4+3}[/tex]
Add the numbers: [tex]4+3=7[/tex]
[tex]m=\frac{8+\frac{31}{4}}{7}[/tex]
[tex]m=\frac{\frac{63}{4}}{7}[/tex] ∵ [tex]8+\frac{31}{4}=\frac{63}{4}[/tex]
Apply fraction rule: [tex]\frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}[/tex]
[tex]m=\frac{63}{4\cdot \:7}[/tex]
[tex]m=\frac{63}{28}[/tex]
Cancel the common factor: 7
[tex]m=\frac{9}{4}[/tex]
So, the slope of the line containing the points (-3,k) and (4,8) is m = 9/4. It means both lines have the same slopes. Hence, they are parallel.
Therefore, we conclude that the value of k = -31/4 is true.