If f(x) = |x| + 9 and g(x) = –6, which describes the range of (f + g)(x)? (f + g)(x) 3 for all values of x (f + g)(x) 3 for all values of x (f + g)(x) 6 for all values of x (f + g)(x) 6 for all values of x

Respuesta :

Answer:

The range of values of [tex](f + g)(x) \ge 3[/tex] is for all values of x [tex]-\infty[/tex] to [tex]+\infty[/tex]

Step-by-step explanation:

Given

[tex]f(x) = |x| + 9[/tex]

[tex]g(x) = -6[/tex]

Required

Describe the range of [tex](f+g)(x)[/tex]

First, calculate [tex](f+g)(x)[/tex]

[tex](f+g)(x) = f(x) + g(x)[/tex]

Substitute values for f(x) and g(x)

[tex](f+g)(x) = |x| + 9 -6[/tex]

Evaluate Like Terms

[tex](f+g)(x) = |x| + 3[/tex]

The above expression shows that [tex](f + g)(x) \ge 3[/tex]

Because [tex]|x| \ge 0[/tex]

Hence, the range of values of [tex](f + g)(x) \ge 3[/tex] is for all values of x [tex]-\infty[/tex] to [tex]+\infty[/tex]