Answer:
The period of cot function is [tex]\pi[/tex]
Step-by-step explanation:
Given : [tex]y=\cot x[/tex]
To find : What is the period?
Solution :
Using the general form of the cot trigonometric function
[tex]y=a\cot (bx-c)+d[/tex]
Where, a=1,b=1,c=0,d=0
Now, The period of the function formula is
[tex]P=\frac{\pi}{b}[/tex]
The value of b=1,
[tex]P=\frac{\pi}{1}[/tex]
[tex]P=\pi[/tex]
Therefore, The period of cot function is [tex]\pi[/tex]