Which expression represents the fourth term in the binomial expansion of (e + 2f)10?
a. 10C3(e7)(2f)3
b. 10C3(e7)(f)3
c. 10C4(e6)(2f)4
d. 10C4(e6)(f)4

Respuesta :

frika

The fourth term of the binomial expansion [tex](e+2f)^{10}[/tex] can be calculated using the formula for (i+1)-th term of the binomial expansion:

[tex]T_{i+1}=C_{10}^i\cdot e^{10-i}\cdot (2f)^i.[/tex]

In order to find term [tex]T_4[/tex], determine that

[tex]i+1=4\Rightarrow i=3.[/tex]

Now

[tex]T_4=C_{10}^3\cdot e^{10-3}\cdot (2f)^3=C_{10}^3\cdot e^7\cdot (2f)^3.[/tex]

Answer: correct choice is A

Answer:

A: 10C3(e7)(2f)3

Step-by-step explanation: